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Evaluation of the Efficiency of a CMP Pad and 
Abrasives in Removing BTA Layer on Copper 
during CMP 
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■  Less than a monolayer of adsorbed BTA 
■  Interval between consecutive interactions by asperities 

is of the order of 1 ms 

■ Want to quantify  
■  Removal efficiency vs. Down pressure or Sliding velocity 
■  Removal efficiency vs. Concentration of the abrasives 

Funding Sources: IMPACT, SINAM and LAM Research 

Definition of Removal Efficiency 
■  In situ electrochemical measurement during polishing 

■  Potential of copper was externally adjusted to 0.6 V (vs. SCE) instead of using 
oxidizing agents 

■  Current densities were measured for various down pressures and sliding 
velocities 

■  Slurry contains 0.01M BTA, 0.01M glycine and 5wt% alumina 
abrasives at pH 4 

Experimental Detail 

Measured Current Densities Evaluated Removal Efficiencies from Experiments 

Analytical Prediction of the Removal Efficiency Predicted Removal Efficiency 

Deformation of Copper by Abrasives Conclusion and Future Work 

■  Current densities in the absence of BTA were nearly constant 
■  Current densities in the presence of BTA increased with the down 

pressure and the sliding velocity 
■  Suggesting lower coverage by the adsorbed BTA layer 

■  tas-as was estimated from the literature for the same pad 
■  Dependent on the conditioning specifications 

■  Nearly insensitive to the down pressures or the sliding velocities 
■  Increase in the measured current densities is due to reduced tas-as 

■  Assumptions 
■  Sliding of abrasives 
■  No removal by asperities 
■  No additional removal on 

overlapped paths  
■  No redeposit of the removed 

materials 
■  No interaction between 

tangential and normal forces 
■  Agglomerated abrasives 

broken into individual particles 
■  An asperity and abrasives 

slide in the same direction by 
the same distance 

■  For lower concentrations of the abrasives the experimentally resolved values 
approximated the prediction with elastic deformation of copper for the lower bound 
of the estimated forces 

■  For higher concentrations the experimentally resolved values were intermediate 
between the predictions with the upper and lower bounds 

■  Removal efficiencies were independent on the down pressure 
and the sliding velocity 

■  Experimentally resolved removal efficiencies agreed well with 
the predictions by an analytical method 

■  The contact mode between the pad, abrasives and wafer 
determines the force applied on an abrasive, resulting in varied 
amount of removal of the protective material 

■  In the future, a model that predicts the material removal rates 
during copper CMP will be proposed based on these findings 
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IC1010TM CMP pad with four 
machined holes after CMP of 
copper. Oxidized copper 
remained on the surface of the 
pad leaving an annular trajectory 
of the electrode  
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Expected width of the 2nd sliding trajectory  is reduced by the overlapped amount  

■  Hertz contact theory was used when 
copper is elastically deformed 

■  Nanohardness of copper ~15GPa 
[Ziegenhain (2009), Saraev (2005)] was 
used when copper is plastically deformed 

(conditioner 1) (conditioner 2) 
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■  Theoretical shear strength of copper (tth) was from literature  
■  The maximum shear stress in the copper at the onset of plasticity during 

nanoindentation approximated the theoretical shear strength of the material 
[Ziegenhain (2009), Saraev (2005), Suresh (1999) and Chen (2003)] 

■  tth ~8.5 Gpa 
■  Assuming friction between the abrasives and copper is present 

(m=0.6), the threshold maximum shear stress in the copper for 
the copper to be plastically deformed is 3.8 GPa 

■  Copper was elastically deformed 
for most cases even when a very 
high friction coefficient was 
assumed 
■  Agreed well with the figures in the 

previous slides confirming the validity 
of the analysis 
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