Evaluation of the Efficiency of a CMP Pad and Abrasives in Removing BTA Layer on Copper during CMP

Funding Sources: IMPACT, SINAM and LAM Research

- t_{as-as} was estimated from the literature for the same pad

- Current densities in the presence of BTA increased with the down pressure and the sliding velocity
 - Suggesting lower coverage by the adsorbed BTA layer

- Dependent on the conditioning specifications
- Nearly insensitive to the down pressures or the sliding velocities
 - Increase in the measured current densities is due to reduced t_{as-as}

Analytical Prediction of the Removal Efficiency

- Assumptions
 - Sliding of abrasives
 - No removal by asperities
 - No additional removal on overlapped paths
 - No redeposit of the removed materials
 - No interaction between tangential and normal forces
 - Agglomerated abrasives broken into individual particles
 - An asperity and abrasives slide in the same direction by the same distance

Schematic of removal of protective material

Removal efficiency, η =0.3 *θ*=0.3 *θ*=0.21

- Hertz contact theory was used when copper is elastically deformed
- Nanohardness of copper ~15GPa [Ziegenhain (2009), Saraev (2005)] was used when copper is plastically deformed

Predicted Removal Efficiency

- For lower concentrations of the abrasives the experimentally resolved values approximated the prediction with elastic deformation of copper for the lower bound of the estimated forces
- For higher concentrations the experimentally resolved values were intermediate between the predictions with the upper and lower bounds

Expected width of the 2nd sliding trajectory is reduced by the overlapped amount

Deformation of Copper by Abrasives

- Theoretical shear strength of copper (t_{th}) was from literature
 - The maximum shear stress in the copper at the onset of plasticity during nanoindentation approximated the theoretical shear strength of the material [Ziegenhain (2009), Saraev (2005), Suresh (1999) and Chen (2003)]

■ *t_{th}* ~8.5 Gpa

Assuming friction between the abrasives and copper is present (m=0.6), the threshold maximum shear stress in the copper for the copper to be plastically deformed is 3.8 GPa

 $\frac{1}{6}f_{ab}E^{*2}$

- Copper was elastically deformed for most cases even when a very high friction coefficient was assumed
 - Agreed well with the figures in the previous slides confirming the validity of the analysis

 $p_0 = 1$

Maximum shear stress in copper

 $\tau_{\rm max} = 0.30 p_0$

τ_{max} τ_{max} C_{wt} Conditioner 1 **Conditioner 2** (wt%) (GPa) (GPa) 0.5 1.5 1.5 1.5 1.5 1 3 3.7 2.2 5 2.4 5.0

Conclusion and Future Work

- Removal efficiencies were independent on the down pressure and the sliding velocity
- Experimentally resolved removal efficiencies agreed well with the predictions by an analytical method
- The contact mode between the pad, abrasives and wafer determines the force applied on an abrasive, resulting in varied amount of removal of the protective material
- In the future, a model that predicts the material removal rates during copper CMP will be proposed based on these findings

 p_0 : maximum Hertz contact stress